Second Semester

Answers

MARKING GUIDE

GENERAL EDUCATION DIPLOMA BILINGUAL PRIVATE SCHOOLS SEMESTER TWO - FIRST SESSION

CHEMISTRY 2022 / 2023

Exam Specifications:

			Mu	ltiple cho	ice (20%)			Extended	response ((80%)		
T	ing %		Co	ognitive le	vels				Co	gnitive lev	vels	
Topics of the units	Weighting	No. of Items	Knowledge (30%)	Application (50%)	Reasoning (20%)	Marks	No. of questions	Marks	Knowledge (30%)	Application (50%)	Reasoning (20%)	Total
An introduction to the chemistry of transition elements	23%	3	1	1	1	3		14	4	7	3	17
Reaction Kinetics	19%	3	1	2	-	3		10	3	5	2	13
Equilibria	29%	4	1	2	1	4	10	16	5	8	3	20
Electrochemistry	29%	4	1	2	1	4		16	5	8	3	20
Total	100%	14	4	7	3	14		56	17	28	11	70

Distribution of cognitive domains and marks.

Item	Mark	Unit	Cognitive domain	Output
1	1	An introduction to the chemistry of transition elements	Knowledge	6.2.a
2	1	An introduction to the chemistry of transition elements	Application	6.2.b
3	1	An introduction to the chemistry of transition elements	Reasoning	6.2.b, 6.2.d
4	1	Quantitative Kinetics	Application	7.1.a
5	1	Quantitative Kinetics	Application	7.1.j
6	1	Quantitative Kinetics	Knowledge	7.1.f
7	1	Quantitative Equilibria	Knowledge	8.1.c
8	1	Quantitative Equilibria	Application	8.1.m
9	1	Quantitative Equilibria	Application	8.1.j
10	1	Quantitative Equilibria	Reasoning	8.1.f
11	1	Electrochemistry	Knowledge	9.1.d
12	1	Electrochemistry	Application	9.1.d
13	1	Electrochemistry	Application	9.1.m,o
14	1	Electrochemistry	Reasoning	9.1.p
15a	1	An introduction to the chemistry of transition elements	Knowledge	6.2.a
15b	1	An introduction to the chemistry of transition elements	Knowledge	6.2.c
15c	2	An introduction to the chemistry of transition elements	Application	6.2.b, 6.2.d
16a	2	An introduction to the chemistry of transition elements	Application	6.1.c
16b	2	An introduction to the chemistry of transition elements	Application	6.2.d
16c.i	2	An introduction to the chemistry of transition elements	Reasoning	6.1.g
16.c.ii	1	An introduction to the chemistry of transition elements	Reasoning	6.2.a, 6.2.b
16d	1	An introduction to the chemistry of transition elements	Knowledge	6.2.f
16e.i	1	An introduction to the chemistry of transition elements	Application	6.2.e
16.e.ii	1	An introduction to the chemistry of transition elements	Knowledge	6.2.d
17.a	1	Reaction kinetics	Knowledge	7.1.a
17.b	1	Reaction kinetics	Knowledge	7.1.a

17.c	2	Reaction kinetics	Application	7.1.f
18.a	2	Reaction kinetics Application		7.1.f
18.b	1	Reaction kinetics	Application	7.1.f
18.c	2	Reaction kinetics	Reasoning	7.1.b, 7.1.j
18.d	1	Reaction kinetics	Application	7.1.k
19.a	1	Quantitative Equilibria	Application	8.1.i
19.b.i	1	Quantitative Equilibria	Application	8.1.e
19.b.ii	3	Quantitative Equilibria	Application	8.1.h
20.a	2	Quantitative Equilibria	Knowledge	8.1.j
20.b	2	Quantitative Equilibria	Knowledge	8.1.j
20.c	1	Quantitative Equilibria	Reasoning	8.1.k
21.a	2	Quantitative Equilibria	Reasoning	8.1.1,m
21.b.i	1	Quantitative Equilibria	Knowledge	8.1.1
21.b.ii	3	Quantitative Equilibria	Application	8.1.n
22.a	2	Electrochemistry	Knowledge	9.1.i
22.b	1	Electrochemistry	Knowledge	9.1.j
23.a	1	Electrochemistry	Knowledge	9.1.f
23.b	1	Electrochemistry	Application	9.1.g
23.c.i	1	Electrochemistry	Knowledge	9.1.f
23.c.ii	1	Electrochemistry	Application	9.1.f
23.d	1	Electrochemistry	Application	9.1.g
23.e	2	Electrochemistry	Application/	9.1.m
	2	·	Reasoning	
23.f	1	Electrochemistry	Application	9.1.n
23.g	1	Electrochemistry	Application	9.1.o
24.a	2	Electrochemistry	Application	9.2.a
24.b.i	1	Electrochemistry	Reasoning	9.2.a

نموذج إجابة امتحان دبلوم التعليم العام للعام الدراسي: ١٤٤٤هـ - ٢٠٢٣/٢٠٢٦م الدور: الأول - الفصل الدراسي: الثاني المادة: الكيمياء الثنائي

تنبيه: نموذج الإجابة في (٤) صفحات

There are 14 multiple-choice items. Each correct answer is worth ONE mark.

Item		Correct option							
1	C	Transition metals display variable oxidation states.							
2	С	$[Cu(H_2O)_4(OH)_2]^x$							
3	D	+3							
4	В	1							
5	A	0.00678							
6	C	[R]							
7	В	[H ₃ O ⁺] and [OH ⁻] are equal							
8	С	H ⁺ (aq) in the acid combine with OH to make H ₂ O							
9	В	pH 6 4 2 0 10 20 30 40 Volume of 0.1 mol dm ⁻³ solution added / cm ³							
10	A	A							
11	A	gain electrons lose electrons							
12	В	HCl							
13	A	increase decrease 0.19							
14	C	$\mathbf{Y}^{2+}/\mathbf{Y}$ $\mathbf{X}^{2+}/\mathbf{X}$ $\mathbf{Z}^{2+}/\mathbf{Z}$							

Question Two (56 Marks)

<u>Part</u>	Section	The answer	<u>The</u>						
			<u>mark</u>						
15	a	A central transition metal ion surrounded by ligands, bonded to the	1						
		central ion by dative (also called co-ordinate) covalent bonds.							
	b	Because transition metal ions are relatively small and have a high	1						
		charge density or they have d orbitals of low energy "partially filled							
		d orbital" that can accommodate electrons donated by the ligands.	_						
	c	Oxidation state of cobalt=+3, Co-ordination number= 6	2						
16	a	Nickel ion: 3d ⁸ or d ⁸ or [Ar]3d ⁸	2						
		Cobalt ion: 3d ⁷ or d ⁷ or [Ar]3d ⁷							
	b	CI _{MINITAL} , C., INTITUTE CI CI _{MINITAL} , C., INTITUTE CH2	2						
		Pt Pt.							
		H ₂ O OH ₂ H ₂ O Cl							
		cis trans 1 mark for each							
	c.i.	Bidentate	2						
		Because each ligand is bonded by two bonds to the metal OR Each							
		ligand is attached to the metal ion by two coordinate bonds OR each							
		ligand contains two lone pairs of electrons OR ligands have two							
		donor atoms which allow them to bind to the central metal atom							
	c.ii.	12 electrons or 6 pairs of electrons	1						
	d	Pink	1						
	e.i	$[Co(H_2O)_6]^{2+} + 2OH^- \rightarrow [Co(H_2O)_4(OH)_2] + 2H_2O$	1						
	e.ii	Octahedral	1						
17	a	An equation showing the relationship between the rate constant and	1						
		the concentrations of the species that affect the rate of the reaction.							
	b	The time taken for the amount (or concentration) of the limiting	1						
		reactant in a reaction to decrease to half its initial value.							
	c	First order	2						
10		Because the reaction has a constant half-life	1						
18	a.	$[NO_2(g)] = $ first order reaction	1						
		$[O_3(g)]$ = first order reaction	1						
	b	$R = k [NO_2] [O_3]$	1						
	c	$R=k [NO_2] [O_3]$	2						
		$10.9 \times 10^{-6} = k [0.5] [1.25]$							
		$k=1.74 \times 10^{-5} \text{mol}^{-1} \text{dm}^3 \text{s}^{-1}$							
		If a student gets the final value without writing the rate law or							
		substitution 2 marks are given.							
		-Units are not necessary.							
		- Any final value with different scientific notation is acceptable and a							
	1	full mark is given	1						
	d	constant	1						

<u>Part</u>	Section	<u>The answer</u>	The mark
19	a	HCN	1 mark
	b.i	$K_a = \frac{[H^+][HCOO^-]}{[HCOOH]}$	1 mark
		$K_a = \frac{1}{[HCOOH]}$	
	b.ii	., [H ⁺][HCOO ⁻]	3 marks
		$K_{a} = \frac{[H^{+}][HCOO^{-}]}{[HCOOH]}$	
		$1.6 \times 10^{-4} = \frac{[x][x]}{[0.08]} OR [H^+] = \sqrt{(K_a \times C)} (1)$	
		$[H^+] = 3.577 \times 10^{-3} \text{ mol dm}^{-3} $ (1)	
		$pH = -log[H^+] = 2.446$ (1)	

<u>Part</u>	Section	<u>The answer</u>	<u>The</u> <u>mark</u>
20	a	-Titration curve A: Strong acid – Strong base (alkali) -Titration curve B: Weak acid– Strong base (alkali)	2
	b	-Titration curve A: 7.0 ± 1 -Titration curve B: 9.0 ± 1	2
	С	Because its color change pH range is covered by the steep portion of the titration. Or corresponds to the sharp pH change.	1
21	a	B Solution B shows a small change in pH when a small amount of acid or base is added to the solution. OR Solution B resists a huge change in pH when a small amount of acid or base is added to the solution.	2
	b.i	A solution whose pH remains nearly constant on the addition of small quantities of acid or base. *(any meaning gives similar definition which indicates pH is not changing a full mark is given)	1
	b.ii	$K_{a} = \frac{[H^{+}][A-]}{[HA]}$ After mixing the volume is 2.0 dm ³ , so [HA] = 0.10 mol dm ⁻³ and [A-] = 0.10 mol dm ⁻³ $1.6 \times 10^{-4} = \frac{[H^{+}](0.10)}{(0.10)}$ (1)	3

$$[H^{+}]= 1.6 \times 10^{-4} \text{ mol dm}^{-3} \quad (1)$$

$$pH= -\log [H^{+}] = 3.80 \quad (1)$$

$$OR \quad pH= pK_a + \log \left(\frac{[A^{-}]}{[HA]}\right)$$

$$= -\log \left(1.6 \times 10^{-4}\right) + \log \left(\frac{(0.10)}{(0.10)}\right) = 3.80$$

<u>Part</u>	<u>Section</u>	<u>The answer</u>	The				
22	a	Temperature of 25 °C (298 K), 1 mark	<u>mark</u> 2				
		Pressure of 1 atmosphere(101 kPa) 1 mark					
	b	H ⁺	1				
	a	The salt bridge	1				
	$\begin{array}{c c} b & Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-} \end{array}$						
23	c.i	Platinum Or Pt or an inert electrode	1				
23	c.ii	1.00 mol dm^{-3}	1				
	d	The electrons move in the external circuit from the Mg^{2+} / Mg halfcell to the Fe^{3+} / Fe^{2+} half-cell.	1				
	e	The magnesium electrode decreases in mass. 1 mark	2 marks				
		Because the magnesium goes into a solution as magnesium ions					
		or Mg is oxidized or Mg loses electrons.					
		1 mark					
	f	$Mg(s) Mg^{2+}(aq) Fe^{3+}(aq), Fe^{2+}(aq) Pt$	1 mark				
	g	$E^{\theta}_{\text{cell}} = E^{\theta} (Fe^{3+}/Fe^{2+}) - E^{\theta} (Mg^{2+}/Mg) = +0.77 - (-2.38) = \underline{3.15V}$	1 mark				

<u>Part</u>	<u>Section</u>	<u>The answer</u>	<u>The</u> <u>mark</u>
	a	OH ⁻ or hydroxide ion H ⁺ , hydrogen ion	1 mark 1 mark
24	b	Oxygen or (O ₂), which bubbles off at the anode. Hydrogen or (H ₂), which bubbles off at the cathode. - If the half equations are written a full mark is given.	1 mark 1 mark

This is the end of the Marking Guide

MARKING GUIDE

GENERAL EDUCATION DIPLOMA BILINGUAL PRIVATE SCHOOLS SEMESTER TWO - SECOND SESSION

CHEMISTRY 2022 / 2023

Exam Specifications: Biningual Private Schools, Chemistry, 2022/2023

citiz thing thing

Total 20 17 13 20 20 Reasoning (20%) 11 3 2 3 3 Cognitive levels gniylqqA (%02) 28 Extended response (80%) 2 00 1 ∞ Knowing (30%) 17 3 S S 16 16 14 10 99 Marks questions No. of 10 14 3 3 Marks Multiple choice (20%) Reasoning (20%) 3 Cognitive levels gniylqqA (%02) 2 7 2 ~ Knowing (30%) 4 श्वेद्धियादंग्रह The same No. of Items 14 3 3 4 100% 23% 19% 29% 29% Weighting % An introduction to the chemistry of transition Topics of the units Reaction Kinetics Electrochemistry Equilibria elements Total

Distribution of cognitive domains and marks.

الراسة الإستان المستادة المستد			/		Comitima		
Serial No	Question number	-Item	Mark	Unit	Cognitive domain	Output	
				An introduction to the		6.2.a	
1	1	1	1	chemistry of transition	Knowing		
				elements			
2	1	2	1	An introduction to the chemistry of transition	Applying	6.2.g	
2	1	2	1	elements	Applying		
				An introduction to the		6.2.d	
3	1	3	1	chemistry of transition	Reasoning		
				elements			
4	1	4	1	Quantitative Kinetics	Knowing	7.1.f,g	
5	1	5	1	Quantitative Kinetics	Applying	7.1.e	
6	11	6	1	Quantitative Kinetics	Applying	7.1.g,i	
7	1	7	1	Quantitative Equilibria	Knowing	8.1.c	
8	1	8	1	Quantitative Equilibria	Applying	8.1.k	
9	1	9	1	Quantitative Equilibria	Applying	8.1.j	
10	1	10	1	Quantitative Equilibria	Reasoning	8.1.f	
11	1	11	1	Electrochemistry	Knowing	9.1.d	
12	1	12	1	Electrochemistry	Applying	9.1.d	
13	1	13	1	Electrochemistry	Applying	9.1.g,o	
14	1	14	1	Electrochemistry	Reasoning	9.1.p	
				An introduction to the			
	2	15.a.i	1	chemistry of transition	knowing	6.2.a	
				elements	1 .		
		15.a.ii	1	An introduction to the chemistry of transition	knowing	6.2.e	
		13.a.11	1	elements		0.2.0	
		15.a.iii		An introduction to the	Applying		
			2	chemistry of transition		6.2.d	
				elements			
		15.b	1	An introduction to the	knowing	614	
			1	chemistry of transition elements		6.1.d	
		15.c.i		An introduction to the			
		13.0.1	1	chemistry of transition	knowing	6.2.e	
				elements			
		15.c.ii]	An introduction to the		(0.1	
			1	chemistry of transition	Applying	6.2.d	
		16 -		elements An introduction to the			
		16.a	1	chemistry of transition	Knowing	6.2.a	
			*	elements	Timo wing	0.2.4	
		16.b		An introduction to the	Applying		
			2	chemistry of transition	11,00	6.2.d	
				elements			

	وزُلْرُةُ لَالَةً بَدِيرً	1)			
على المارة المارة المارة المارة المارة المارة المارة	6 d (346) (d d d d d d d d d d d d d d d d d d	1	An introduction to the chemistry of transition elements	Applying	6.2.d
1000	16.d	1	An introduction to the chemistry of transition elements	Reasoning	6.2.e
	16.e	2	An introduction to the chemistry of transition elements	Reasoning	6.2.c
	17.a.i	1	Quantitative Kinetics	Knowing	7.1.d
	17.a.ii	1	Quantitative Kinetics	Knowing	7.1.d
	17.a.iii	1	Quantitative Kinetics	Knowing	7.1.d
	17.b.i	1	Quantitative Kinetics	Reasoning	7.1.i
	17.b.i	1	Quantitative Kinetics	Reasoning	7.1.i
	17.c	1	Quantitative Kinetics	Applying	7.1.e
	18.a	1	Quantitative Kinetics	Applying	7.1.i
	18.b	2	Quantitative Kinetics	Applying	7.1.k
	18.c	1	Quantitative Kinetics	Applying	7.1.f
	19.a	1	Quantitative Equilibria	Knowing	8.1.e
	19.b	1	Quantitative Equilibria	Knowing	8.1.d
	19.c	3	Quantitative Equilibria	Applying	8.1.f, i
	20.a	1	Quantitative Equilibria	Knowing	8.1.a
	20.b	1	Quantitative Equilibria	Knowing	8.1.j
	20.c	2	Quantitative Equilibria	Reasoning	8.1.k
	21.a	1	Quantitative Equilibria	Knowing	8.1.1
	21.b	4	Quantitative Equilibria	Applying	8.1.0
	21.c.i	1	Quantitative Equilibria	Applying	8.1.m
	21.c.ii	1	Quantitative Equilibria	Reasoning	8.1.m
	22.a.i	3	Electrochemistry	Knowing	9.1.i
	22.a.ii	1	Electrochemistry	Knowing	9.1.j
	22.a.iii	1	Electrochemistry	Knowing	9.1.j
	22.a.iv	1	Electrochemistry	Applying	9.1.h
	22.b	1	Electrochemistry	Applying	9.1.g
	22.c	1	Electrochemistry	Applying	9.1.g
	22.d	2	Electrochemistry	Applying/ Reasoning	9.1.m
	22.e	1	Electrochemistry	Applying	9.1.n
 	22.f	1	Electrochemistry	Applying	9.1.0
	23.a.i	1	Electrochemistry	Applying	9.2.a
	23.a.ii	1	Electrochemistry	Applying	9.2.a
	23.b.i	1	Electrochemistry	Reasoning	9.2.a
	23.b.ii	1	Electrochemistry	Reasoning	9.2.a

TOTAL

PAGES: 6

MARKS: 70

Question One (14 Marks)

There are 14 multiple-choice items. Each correct answer is worth ONE mark.

Item	Correct option
1	b) C ₂ O ₄ ² -
2	a) [Ar] 3d ⁵
3	d) octahedral +3
4	d) second- order dependent on the initial concentration
5	c) $mol \ dm^{-3} \ s^{-1}$
6	d) If [ClO ₂] is doubled, the reaction rate will increase by a factor of 4.
7	d. 1.0×10^{-14}
8	b. methyl red
9	b. Weak acid- strong base
10	a. D
11	c) gain electrons
12	a) PbO
13	c) Cu 0.78
14	c) Zn ²⁺ , Cu

Question Two (56 Marks)

<u>Part</u>	Section	The answer	<u>The</u>	
			<u>mark</u>	
15	a.i	Are d-block elements which form one or more stable ions with incomplete orbitals.	1 mark	
	a.ii	$[Cu (NH_3)_4(H_2O)_2]^{2+}$	1	
	a.11		mark	
	a.iii	H ₃ N _{H₃} Cu H ₃ N _{H₃} N _{H₃} any octahedral geometry with the right number of H ₂ O and NH ₃ is correct, and two marks are given.	2	
	b	Because the 4s with a half-filled subshell is an energetically preferred configuration or to avoid the inter-electron repulsion	1	
	c.i	$[CuCl_4]^{2-}$	1	
	c.ii	Tetrahedral	1	

<u>Part</u>	Section	<u>The answer</u>	<u>The</u>
			<u>mark</u>
		A molecule or ion with one or more lone pairs of electrons	
	a.	which form dative covalent bonds to a central transition	1
16		element atom or ion	
	b.	+2, coordination number= 6	2
	c.	bidentate	1
	d	6 pairs	1
		CH ₃ CH ₃ , because ethane molecule has no lone pair for dative	2
	е	bond	

<u>Part</u>	Section	The answer	<u>The</u> <u>mark</u>
	a.i	An equation showing the relationship between the rate constant and the concentrations of the species that affect the rate of reaction.	1
17	a.ii	The power to which the concentration of the reactant is raised in the rate equation.	1
	a.iii	The time taken for the amount (or concentration) of the limiting reactant in a reaction to decrease to half its initial value.	1
	b.i	First-order	1
	b.ii	Second-order	1
	С	$R = k [PCl_3] [Cl_2]^2$	1

<u>Part</u>	Section	<u>The answer</u>	<u>The</u> mark
18	a	Second-order.	1
		$3.0 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1} = \text{k} (0.6 \text{ mol dm}^{-3})^2$	2
	b	$k = 8.3 \times 10^{-3}$ $dm^3 \text{ mol}^{-1} \text{ s}^{-1}$	
		1 mark 1 mark	
	С	Concentration of reactant / mol dm-3	1 mark

<u>Part</u>	Section	The answer	<u>The</u> mark
19	a	$K_a = \frac{[H^+][CH3COO^-]}{[CH3COOH]}$	1
	b	temperature.	1
	С	$[H^{+}] = \sqrt{(K_a \times C)}$ $(0.005)^2 = K_a \times 0.15 \qquad (1)$ $K_a = 1.67 \times 10^{-4} \text{ mol dm}^{-3} \qquad (1)$ $pK_a = -\log K_a$ $pK_a = 3.78 (1)$	3

<u>Part</u>	Section	<u>The answer</u>	<u>The</u> mark
20	a	A reaction that does not go to completion in which reactants and products are present in fixed concentration ratios.	1
	b	9.0 ± 1	1
	c	NO Because its color-change range (pH range) is NOT covered by the steep portion of the titration curve.	2,
		OR Methyl yellow would not be a suitable indicator to use because it only changes colour in acidic region (2.9-4.0) that do not correspond to the sharp pH change.	
21	a	A solution whose pH is totally unaffected by the addition of small quantities of acid or alkali.	1

General Education Diploma,	Semester Two, Second Session
Bilingual Private School	ols, Chemistry, 2022/2023

(1.50) Lin	General Education Diploma, Semester Two, Second Session Bilingual Private Schools, Chemistry, 2022/2023	
المرتبية في الم	The sodium hydroxide reacts with hydrofluoric acid (HF) [OH] = 0.05 mol dm ⁻³ so $[NaF] = 0.06 + 0.05 = 0.11$ mol dm ⁻³ (1) [HF] = 0.08 - 0.05 = 0.030 mol dm ⁻³ (1) $K_a = \frac{[H^+][F^-]}{[HF]}$	4 marks
	$5.6 \times 10^{-4} = \frac{[H^{+}](0.11)}{(0.030)}$ (1) $[H^{+}] = 1.5 \times 10^{-4} \text{ mol dm}^{-3}$ $pH = -\log [H^{+}] = 3.82$ (1) $or pH = pK_{a} + \log \left(\frac{[F^{-}]}{[HF]}\right)$ $= -\log (5.6 \times 10^{-4}) + \log \left(\frac{(0.11)}{(0.030)}\right) = 3.82$	
c.i	-When a small amount of hydrochloric acid is added to this buffer solution, most of the extra H ⁺ (aq) ions react with the reservoir of F (aq), and this tends to minimise the decrease in pH. - The extra H ⁺ (aq) react with F (aq) ions and the equilibrium moves to the left to remove the added H ⁺ (aq), and this tends to minimise the decrease in pH. -The extra H ⁺ (aq) react with F (aq) ions to form the weak acid HF (aq), and this tends to minimise the decrease in pH. Any answer from above mark is given.	1 mark
c.ii	$F^{-}(aq) + H^{+}(aq) \rightarrow HF(aq)$ The physical states of this reaction are not necessary.	1 mark

<u>Part</u>	Section	<u>The answer</u>	<u>The</u> mark
22	a.i	Temperature of 25 °C (298 K), 1 mark	3 marks
		Pressure of 1 atmosphere(101 kPa) 1 mark	
		Concentration of the aqueous solution is 1.00 mol dm ⁻³ 1 mark	
	a.ii	$H_2(g)$	1
	a.iii	Platinum	1
	a.iv	To measure the E^{θ} value for Mg ²⁺ / Mg half-cell.	1
	b	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$	1
	С	The electrons move in the external circuit from the Mg^{2+} / Mg halfcell to the H^+ / H_2 half-cell.	1

General Education Diploma, Semester Two, Second Session Bilingual Private Schools, Chemistry, 2022/2023	
The magnesium electrode decreases in mass. 1 mark Because the magnesium goes into the solution as magnesium ions.	2
1 mark	
$Mg(s) \mid Mg^{2+} \mid 2H^{+}(aq) \mid H_{2}(g), Pt$	1
$E^{\theta}_{\text{cell}} = E^{\theta} (2H^{+}/H_2) - E^{\theta} (Mg^{2+}/Mg) = 0.00 - (-2.38) = 2.38V$	1

<u>Part</u>	<u>Section</u>	<u>The answer</u>	<u>The</u> <u>mark</u>
23	a	The anode: $2Cl^- \rightarrow Cl_2 + 2e^-$ The cathode: $K^+ + e^- \rightarrow K$	1 1
	b	The anode: Chlorine or Cl ₂ The cathode: Potassium or K	1 1

This is the end of the Marking Guide

MARKING GUIDE

GENERAL EDUCATION DIPLOMA BILINGUAL PRIVATE SCHOOLS SEMESTER TWO - FIRST SESSION

CHEMISTRY 2021 / 2022

		Į.	1 00.21	25	10	25	10	70							
		els	Reasoning (20%)	4	2	4	1	11							
	80%)	Cognitive levels	gniylqqA (%02)	10	4	10	4	27							
100 E OF	response	Cog	gniwonА (%0£)	9	2	9	3	18							
\$100,000 \$1,000 \$1,000 \$2,000 \$1,000	Extended response (80%)		Marks	20	8	20	&	99							
			No. of questions			10									
Diploma, Semester Two, First Session و المارية المارية Applicate Schools, Chemistry, 2021/2022 المارية الماري	Multiple choice (20%)		Marks	5	2	5	2	14							
oloma, Se Schools, C		Cognitive levels	Reasoning (20%)	1	1	1	1	3							
ation Dip Private S			gnitive le	gnitive le	gnitive le	gnitive le	gnitive le	gnitive le	gnitive le	gnitive le	gniylqqA (%02)	3	1	2	1
General Education Bilingual Priva		°C	BniwonA (%0£)	1	1	2	ı	4							
Gener			No. of Items	3	2	S	2	14							
;;		% gniì	Weigh	35%	15%	35%	15%	100%							
Exam Specifications:		7 the state of the	ropies or me units	Chemical Energetics	Quantitative Kinetics	Quantitative Equilibrium	Electrochemistry	Total							

Distribution of cognitive domains and marks.

Serial No	Item	Mark	Unit	Page	cognitive domains	output
1	1	1	Chemical Energetics	297	Knowing	6.1.d
2	2	1	Chemical Energetics	296	Applying	6.1.e
3	3	1	Chemical Energetics	290	Applying	6.1.f
4	4	1	Chemical Energetics	291	Reasoning	6.2.c
5	5	1	Chemical Energetics	293	Applying	6.1.f
6	6	1	Quantitative Kinetics	353,354,34 9,350	Knowing	7.1e, 7.1h
7	7	1	Quantitative Kinetics	357	Applying	7.1c.i
8	8	1	Quantitative Equilibria	369	Knowing	8.1.c
9	9	1	Quantitative Equilibria	370	Knowing	8.1.f
10	10	1	Quantitative Equilibria	367	Applying	8.1.e
11	11	1	Quantitative Equilibria	367	Applying	8.1.g
12	12	1	Quantitative Equilibria	373	Reasoning	8.1.j
13	13	1	Electrochemistry	444	Reasoning	9.1.f
14	14	1	Electrochemistry	445	Applying	9.1.n

(Eliab:					النزورون
Item	Mark	Unit	Page	cognitive domains	Output
15a	1	Chemical Energetics	299	Knowing	6.1.d
15b	2	Chemical Energetics	291	Applying	6.1.b
					6.1.c
15c	4	Chemical Energetics	293	Reasoning	6.1.f
16a	1	Chemical Energetics	297	Knowing	6.1.a
16b	_	Chemical Energetics	200	Knowing	6.1.a
	3		298		6.1.b
16c	1	Chemical Energetics	295	Applying	6.2.b
16d	1	Chemical Energetics	297	Applying	6.2.b
17a	1	Chemical Energetics	294	Knowing	6.2.a
17b	2	Chemical Energetics	296	Applying	6.2.b
17c	4	Chemical Energetics	300	Applying	6.2.c
18.a.i	1	Quantitative Kinetics	353-355	Knowing	7.1.d.ii
18.a.ii	1	Quantitative Kinetics	353	Knowing	7.1d.iv
18.iii	1	Quantitative Kinetics	350-357	Applying	7.1.1
18.b	1	Quantitative Kinetics	349-351	Applying	7.1.e
18.c	2	Quantitative Kinetics	353-355	Applying	7.1.h, 7.1.i
18.d.i	1	Quantitative Kinetics	356-357	Reasoning	7.1.k
18.d.ii	1	Quantitative Kinetics	356-357	Reasoning	7.1.1
19.a	1	Quantitative Equilibria	367	Applying	8.1.e
19.b	1	Quantitative Equilibria	367	Knowing	8.1.d
19.c	3	Quantitative Equilibria	368	Applying	8.1.h
20.a	2	Quantitative Equilibria	373	Knowing	8.1.j
20.b	2	Quantitative Equilibria	373	Knowing	8.1.j
20.c	2	Quantitative Equilibria	374	Reasoning	8.1.k
21.a	1	Quantitative Equilibria	371	Knowing	8.1.1
21.b	4	Quantitative Equilibria	371	Applying	8.1.n
21.c	2	Quantitative Equilibria	371	Applying	8.1.n
21.d	2	Quantitative Equilibria	372	Reasoning	8.1.m
22.a.i	1	Electrochemistry	441-445	knowing	9.1.c
22.a.ii	1	Electrochemistry	441-445	knowing	9.1.c
22.a.ii i	1	Electrochemistry	444	knowing	9.1.k

23.a.i	1	Electrochemistry	445	Applying	9:1:m
23.a.ii	1	Electrochemistry	445	Applying	9.1 n
23.a.ii i	2	Electrochemistry	445	knowing and applying	9.1.0
23.b	1	Electrochemistry	445	Applying	9.1.n

TOTAL PAGES: 6 MARKS: 70
Question One (14 Marks)

There are 14 multiple-choice items. Each correct answer is worth ONE mark.

Item No.		Cor	rect option
1	The	e energy releas	ed is more than the energy required
2		CO + 1/2	$O_2 \longrightarrow CO_2$
3		,	-92.3
4			2Y-2X
5		2Na+	$^{1}/_{2}O_{2} \rightarrow Na_{2}O$
6	<u>C</u>	$Rate=k[R]^2$	A parabola starting at the origin
7	c. Rate = $K[NO_2]^2$	[CO] ⁰	
8	a. K _w is equal to [H ₂	$_{3}O^{+}]^{2}$.	
9	c. K _a increases p	K _a decreases.	
10	b. mol dm ⁻³		
11	c. $\frac{K_a [H_2SO_3]}{[HSO_3^-]}$		
12	d. 2.0	9.0	
13	c) Electrons will flo	w from Zn to	Ag
14	d) + 1.56 V		

Question Two (56 marks)

2

<u>Part</u>	Section	The answer	<u>The</u>		
			<u>mark</u>		
15	a.	The enthalpy change needed or produced w mole of solution is produced or (if the definitions of lattice dissociation formation or the enthalpy of solution are was accepted)	or lattice		
	b.	Endothermic(1 mark) The energy value increased or the energy of products is higher than the energy of reactants(1 mark)			
	C.	n. ΔH =-m.c. ΔT $\Delta T = -\frac{n.\Delta H}{m.c} \text{ (1 mark for one of the equation)}$ $n = \frac{m}{Mr} = \frac{5.85g}{58.5g/mol} = 0.10 \text{ mol (1 mark)}$ $.\Delta T = -\frac{0.10mol \times 40000J.mol - 1}{500g \times 4.18 \frac{J}{g.o_C}} = -1.91 ^{\circ}\text{C (calculate from the graph 40000 J.mol is 1 mark)}$ $\Delta T = T_f - T_i$ $T_f = 26 + (-1.91) = 24.09 \approx 24 (1 \text{ mark)}$			
16	a.	The heat is taken in from the surrounding Or the enthalpy of the product is more that enthalpy of the reactant. Or the enthalpy increases that ΔH is postored increases. Or the temperature of the system increases.	an the sitive. ed.		
	b.i	System A	2		
	h ::	Surrounding B	1		
	b.ii	A to B $\Delta H = 232 + (-111) = +121 I$	1		
	c. Δ <i>H</i> = 232 + (-111) = +121) d. Positive				
17	a.	- if a chemical change takes place by several different routes, the overall enthalpy change is the same, regard the route by which the chemical change occurs.			

General Education Diploma, Semester Two, First Session
Bilingual Private Schools, Chemistry, 2021/2022

	- the change of enthalpy in a chemical reaction is the same regardless of whether the reaction takes place in one step or	يرة وعمريتين و الانتبارات ولوواه
	several steps, provided the initial and final states of the	() - () () ()
	reactants and products are the same.	
	Any	
b.	i- $\Delta H = -483.6 kJ$ $\Delta H_f = \frac{\Delta H}{n} = \frac{-483.6 kJ}{2mol} (1 \text{mark})$	1
	$\Delta H_f = \frac{1}{n} = \frac{2mol}{2mol} \text{ (1 IIIalk)}$	1
	$=-241.8 {}^{kJ}/{}_{mol} (1 \text{mark})$	
c.	$B_2O_3(s) + 3H_2O(g) \rightarrow B_2H_6(g) + 3O_2(g)$ $\Delta H = 2036 \ kJ (1 \text{ mark})$	1
	$2B(s) + \frac{3}{2}O_2(g) \rightarrow B_2O_3(s)$ $\Delta H = -1247 \ kJ \ (1)$	2
	mark) $(\times \frac{3}{2})2H_2(g) + O_2(g) \rightarrow 2H_2O(g) \Delta H = -483.6 \text{ kJ}$	
	$3H_2(g) + \frac{3}{2}O_2(g) \rightarrow 3H_2O(g)$ $\Delta H = -725.4 \text{ kJ} (1)$	1
	mark)	
	$2B(s)+3H_2(g) \to B_2H_6(g)$ $\Delta H = 63.6 kJ$ (1 mark)	

<u>Part</u>	Section	<u>The answer</u>	<u>The</u> mark
	a.i	How the concentration of a reactant affects the rate of a reaction or any correct definitions 1 mark is given	1 mark
	a.ii	It is the time taken for the concentration of a reactant to decrease to half its initial value.	1 mark
18	a.iii	To measure the gradient of the concentration of [A] against time at various times in order to find the rates. These rates can then be plotted against concentration of [A]. Or by Studying the graph between concentration of [A] against the rates. Or by the initial rates method by keeping all reactants except one in excess. Or by clock method by giving a value for the initial rate that is lower than the true value, because it assumes that the concentration time graph is a straight line until the clock stop or to be done experimentally or colorimeter. -Any answer from above mark is given.	1 mark
	В	Rate= $\frac{-\Delta[A]}{\Delta t}$ or Rate = $K[A]^2$	1 mark
	c	Second order. (1mark) Because the curve is not exponential or the curve has different half-lives (t _{1/2}) or the successive half-lives are not the same or the successive half-lives become longer or because the time taken for the concentration of the reactant (A) to decrease from [A] to ½[A] from (0.20) to (0.05) is not the same as the time taken for the	2 marks

	A Company of the Comp	12960000
	concentration of the reactant (A) to decrease from ½[A] to ¼[A] from (0.05) to (0.025).	المانتاك والقالم
	Or because it requires double time to decrease the second half compared to the first half.	
	(1 mark) -Any answer from above mark is given.	
d.i	Rate= $\frac{-\Delta[A]}{\Delta t}$ or Rate= $\frac{-\Delta[0.025-0.20]}{\Delta(17-0)}$ (1mark) = 10.29 x10 ⁻³ mol dm ⁻³ s ⁻¹	1 mark
d.ii	Rate= $K[A]^2$ or 10.29×10^{-3} mol dm ⁻³ s ⁻¹ = $k[0.025 \text{ mol dm}^{-3}]^2$ $k=16.46 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$	1 mark

Continue Question Two

Part	Section	<u>The answer</u>	The mark
19	a	$K_{a} = \frac{[H^{+}][CN^{-}]}{[HCN]}$	1 mark
	b	Change temperature.	1 mark
	c	4.9 × 10 ⁻¹⁰ = $\frac{[x][x]}{[0.25]}$ OR $[H^+] = \sqrt{(K_a \times C)}$ (1mark)	3 marks
		$[H^+]$ = 11.07 × 10 ⁻⁶ mol dm ⁻³ (1mark) pH= - log $[H^+]$ = 4.96 (1mark)	

<u>Part</u>	Section	<u>The answer</u>	<u>The</u> mark			
20	a	-Titration curve A: Strong alkali(base) – Strong acid	2 marks			
		-Titration curve B: Strong alkali(base) – Weak acid				
	b	-Titration curve A: 7.0 ± 1	2 marks			
		-Titration curve B: 9.0 ± 1				
	c	Phenolphthalein (1 mark)	2 marks			
		Because its colour-change range (pH range) is covered by the				
		steep portion of both titration curves A and B. (1 mark)				
21	a	A solution whose pH is totally (almost) unaffected by the addition	1 mark			
		of small quantities of acid or alkali. Or A solution that can resist				
		large sudden change in pH, when a small amount of acid or base is added.				
-	b		4 marks			
	~	$K_a = \frac{[H^+][HCO_2^-]}{[HCO_2H]}$				
		After mixing the volume is 200 cm ³ ,				
		so $[HCO_2H] = 0.15$ mol dm ⁻³ and $[HCO_2] = 0.15$ mol dm ⁻³				

General Education Diploma, Semester Two, First Session	
Bilingual Private Schools, Chemistry, 2021/2022	1

		Bilingual Private Schools, Chemistry, 2021/2022	120N= - N = 1
		$1.6 \times 10^{-4} = \frac{[H^+](0.15)}{(0.15)}$	ورافق فلانقباطة
		(0.15)	2.4.7.//
		$[H^+] = 1.6 \times 10^{-4} \text{ mol dm}^{-3}$	100.0
		$pH = -\log [H^+] = 3.80$	3
		[Weet]	
		OR $pH = pK_a + log(\frac{[HCO_2]}{[HCO_2H]})$	
		$[HCO_2H]$	
		$= -\log(1.6 \times 10^{-4}) + \log(\frac{(0.15)}{(0.15)}) = 3.80$	
	•	(0.13)	
	c	The hydrochloric acid reacts with HCO ₂	2 marks
		$[H+] = 0.01/0.2 \text{ dm}^{-3} = 0.05 \text{ mol dm}^{-3} (1 \text{ mark})$	
		so $[HCO_2^-] = 0.15 - 0.05 = 0.10 \text{ mol dm}^{-3}$	
		$[HCO_2H] = 0.15 + 0.05 = 0.20 \text{ mol dm}^{-3}$	
		$K_a = \frac{[H^+][HCO_2]}{[HCO_2H]} (1 \text{ mark})$	
		[HCO ₂ H] (2)	
		(H ⁺](0.10)	
1		$1.6 \times 10^{-4} = \frac{[H^+](0.10)}{(0.20)}$	
		$[H^{+}] = 3.2 \times 10^{-4} \text{ mol dm}^{-3}$	
		$pH = -\log [H^+] = 3.50$	
		OR $pH = pK_a + log(\frac{[HCO_2]}{[HCO_2H]})$ (or 1 mark if this	
		equation is written)	
		(0.10)	
		$= -\log(1.6 \times 10^{-4}) + \log(\frac{(0.10)}{(0.20)}) = 3.50$	
	d.i	When a small amount of sodium hydroxide is added to	1 mark
		this buffer solution, most of the extra OH (aq) ions react	
		with the reservoir of HCO ₂ H(aq), and this tends to	
		minimise the increase in pH. Or OH ions will be	
		neutralized by H ⁺ forming water, so equilibrium shifts to	
		right hand side.	
	d.ii	$HCO_2H(aq) + OH^-(aq) \rightarrow HCO_2^-(aq) + H_2O(1)$	1 mark
		$H^+ + OH^- \rightarrow H_2O$	
		The physical states of this reaction are not necessary.	1 1
22	a.i	Fe^{2+}	1 mark
	a.ii	F ₂ O	1 mark
	a.iii	Fe ²⁺ and Cl ⁻	1 mark
23	a.i	$(Cr^{2+}_{(aq)} I Cr^{3+}_{(aq)} II Cu^{2+}_{(aq)} I Cu_{(s)})$	1 mark
	a.ii	$E_{\text{cell}}^0 = +0.34 - (-0.41) = +0.75 \text{ V}$	1 mark
	a.iii	feasible, because E^0_{cell} is psotive.	2 marks
	b.	$E_{\text{cell}}^0 = -2.37 - (+0.34) = -2.71 \text{ V}$	1 mark

MARKING GUIDE

GENERAL EDUCATION DIPLOMATION BILINGUAL PRIVATE SCHOOLS SEMESTER TWO - SECOND SESSION

CHEMISTRY 2021 / 2022

S
0
=
a
C
Ę
a
õ
1
\subseteq
(Q
×
Ш

	Total			10	25	10	70	
	rels	Reasoning (20%)	4	2	4	1	11	
0000	ognitive levels	gniylqqA (%02)	10	4	10	4	28	
response	W.C.S.	gniwonX (%0£)	9	2	9	3	17	
Extended respon		Marks	20	8	20	8	99	
-14		No. of questions	3		10		a.	
		Marks	5	2	5	2	14	
choice (20%)	vels	rels	Reasoning (20%)	1	ı	1	1	3
Multiple choi	Cognitive levels	gniylqqA (%02)	3	1	2	1	7	
Mu	ပိ	Knowing (30%)	1	1	2	ı	4	
		No. of Items	5	2	5	2	14	
% gnithgiəW			35%	15%	35%	15%	100%	
	T	Topics of the units	Chemical Energetic	Quantitative Kinetics	Quantitative Equilibrium	Electrochemistry	Total	

Distribution of cognitive domains and marks.

Serial No	Item	Mark	Unit	Page	cognitive domains	output
1	1	1	Chemical Energetic	297	Knowing	6.2.a
2	2	1	Chemical Energetic	296	Applying	6.1.e
3	3	1	Chemical Energetic	290	Applying	6.1.f
4	4	1	Chemical Energetic	291	Reasoning	6.1.f
5	5	1	Chemical Energetic	293	Applying	6.2.b
6	6	1	Quantitative Kinetics	349-353	Knowing	7.1.d.i
7	7	1	Quantitative Kinetics	350,351	Applying	7.1e
8	8	1	Quantitative Equilibria	368	Knowing	8.1.c
9	9	1	Quantitative Equilibria	368	Knowing	8.1.g
10	10	1	Quantitative Equilibria	369	Applying	8.1.g
11	11	1	Quantitative Equilibria	371	Applying	8.1.m
12	12	1	Quantitative Equilibria	374	Reasoning	8.1.j
13	13	1	Electrochemistry	443	Reasoning	9.1-j
14	14	1	Electrochemistry	445	Applying	9.1.m

Item	Mark	Unit	Page	cognitive domains	output
15a	1	Chemical Energetic	299	Knowing	6.1.d
15b	1	Chemical Energetic	291	Applying	6.1.b
15c	2	Chemical Energetic	293	Reasoning	6.1.f
15d	2	Chemical Energetic	297	Reasoning	6.1.f
16a	1	Chemical Energetic	298	Knowing	6.1.d
16b	3	Chemical Energetic	295	Knowing	6.1.d
16c.i	2	Chemical Energetic	297	Applying	6.1.f
16c.ii	1	Chemical Energetic	294	Applying	6.1.d
17a	1	Chemical Energetic	296	Knowing	6.1.d
17b	4	Chemical Energetic	300	Applying	6.2.c
17c	1	Chemical Energetic	299	Applying	6.1.b
17d	1	Chemical Energetic	291	Applying	6.1.f
18.a	1	Quantitative Kinetics	349	Knowing	7.1.d.i
18.b	1	Ouantitative Kinetics	351	Knowing	7.1.d.i

					17
18.c	4	Quantitative Kinetics	356	Applying	المالية المنظم المالية
18.d	1	Quantitative Kinetics	356	Reasoning	71.j
18.e	1	Quantitative Kinetics	356	Reasoning	ZIK
19.a	1	Quantitative Equilibrium	8.1.i	Applying	367
19.b	1	Quantitative Equilibrium	8.1.i	Applying	367
19.c	1	Quantitative Equilibrium	8.1.d	Knowing	367
19.d	2	Quantitative Equilibrium	8.1.e	Applying	367
19.e	3	Quantitative Equilibrium	8.1.h	Applying	368
20.a	2	Quantitative Equilibrium	8.1.j	Knowing	374
20.b	2	Quantitative Equilibrium	8.1.j	Knowing	374
20.c	2	Quantitative Equilibrium	8.1.k	Reasoning	374
21.a	1	Quantitative Equilibrium	8.1.1	Knowing	371
21.b	3	Quantitative Equilibrium	8.1.n	Applying	371
21.c	2	Quantitative Equilibrium	8.1.m	Reasoning	371
22.a	1	Electrochemistry	445	Applying	9.1-c
22.b	3	Electrochemistry	444	Knowing	9.1 - h
22.c.i	1	Electrochemistry	443	Applying	9.1 - a
22.c.ii	1	Electrochemistry	441	Reasoning	9.1-f
23.a.i	1	Electrochemistry	445	Applying	9.1-n
23.a.ii	1	Electrochemistry	446	Applying	9.1 - L

MARKS: 70

TOTAL PAGES: 5

Question One (14 Marks)

There are 14 multiple-choice items. Each correct answer is worth ONE mark.

Item No.	Correct option			
1	c) It is not necessary to consider the number of moles in summation of reaction			
2	d) $2HCl+Ca(OH)_2 \rightarrow CaCl_2+2H_2O$			
3	a) -393.5			
4	d) -37.5			
5	b) $4HCl(g)+ O_2(g) \rightarrow 2Cl_2(g)+ 2H_2O(g)$			
6	a) It always has positive value.			
7	c) 1 and 4 only			
8	d. mol ² dm ⁻⁶			
9	d. 1.0×10^{-14}			
10	b. 2.0×10^{-14} mol dm ⁻³			
11	c. CH₃CO₂H react with OH⁻.			
12	c. Phenolphthalein (pH range 8.2 – 10.0).			
13	a) It is unreactive			
14	b) Pt 1/2H ₂ H ⁺ Fe ³⁺ , Fe ²⁺ Pt			

Question Two (56 Marks)

					1945 - 1945 - 1945 - NOTES	
15	a.	Positive o	r negative		وَلَازُوْ لَالْمُسَامِلِينَ وَلَوْلَدُوْ لِلْمُعَنَايَاتِي	1
	b.	Exotherm	ic		19:1	1
	c.	$n = -\frac{1}{n}$ $n = -\frac{1}{n}$	n.c. ΔT $n.c.\Delta T$ ΔH $1000x4.18x5$ -30000 $\approx 0.7 \text{ moles}$		الراقة على الراقة على المالة ا	1
	d.	=42 g.mc 23 + MrX MrX = 19	= 42	$n = \frac{m}{Mr}$ $Mr = \frac{29.4}{0.7}$		1
16	a.	The enthalpy change i		mole of solid crysta	l is formed from its	1
	b.	energy	Sign of energy enthalpy	Occur when		3
		Produced	negative	Forming bonds		
		Absorbed	positive	breaking		
	c.i	$\Delta H = 353 - 437$				1
		= -84 kJ				
	c.ii	Reactants				1
17	a.	The enthalpy change	is produced when 3	1 mole of matter rea	cts (burns) with oxygen	1
	b.		$-2H_2(g) \rightarrow 2C_3H_8$		$\Delta H = -248 kJ$	1
	$2C_3H_8(g) + 10O_2(g) \rightarrow 6CO_2(g) + 8H_2O(l) \Delta H = -4440 \ kJ$ $2H_2O(l) \rightarrow 2H_2(g) + O_2(g) \qquad \Delta H = 572 \ kJ$					1
		2 <i>C</i> ₃ <i>H</i> ₆ (ℓ	$g) + 90_2(g) \to 600$	$O_2(g) + 6H_2O(l)$	$\Delta H = -4116 \ kJ$	1
	c.	Exothermic				1
	d.	- 2220 kJ				1

Part	Sect	The answer	The
1 411	ion	The answer	mark
		How the concentration of a product P increases with time, or how the	1 mark
	a.	concentration of a reactant R decreases with time. Or it tells us how	
		quickly the reaction happens.	
		-Follow the change in concentration/ volume of a reactant/ product.	
			1 mark
	b.	Or follow the change in color / colorimetry / less light transmission / measure absorbance	
		-One mark is given for the above answers.	
		Order with respect to A: First order (1mark)	4 marks
18		Explanation: From experiments 1 and 2 as [A] is increased (doubled)	1 marito
		in the ratio 1:2, so the initial rate again is increased (doubled) in the	
		ratio 1:2 (when [B] does not change) Therefore, the reaction is first	
		order with respect to A or by calculation $R_2/R_1=k[A]^x[B]^y/k[A]^x[B]^y$	
		so $4 \times 10^{-3} / 2 \times 10^{-3} = k(0.2)^{x} (0.1)^{y} / k(0.1)^{x} (0.1)^{y}$ so $2^{1} = 2^{y}$ so $y = 1$ (1mark)	
	c.	Order with respect to B: Second order. (1mark)	
		Explanation: From experiments 2 and 3 as [B] is increased in the ratio	
		1:4, so the initial rate again is increased in the ratio 1:4 (when [A]	
		does not change) Therefore, the reaction is second order with respect	
		to B or by calculation $R_3/R_2 = k[A]^x[B]^y/k[A]^x[B]^y$ so $16x10^{-3}/4x10^{-3} = k[A]^x[B]^y$	
		$k(0.2)^{x}(0.2)^{y}/k(0.2)^{x}(0.1)^{y}$ so $4=2^{y}$ so $2^{2}=2^{y}$ so $y=2$ (1mark)	
	d.	rate = $k[A]^{1}[B]^{2}$ or $R = k[A][B]^{2}$	1 mark
-		$R_2=K[A]^1[B]^2$ so $4.00 \times 10^{-3}=k(0.200)(0.100)^2$ (½mark)	1 mark
		$k = 2 \text{ mol}^{-1} \text{dm}^3 \text{s}^{-1}$ (½mark)	
	e.	-If a student gets the final value without writing the rate law or	
		substitution 1 mark is given.	
		-Units are not necessary.	

Part	Section	The answer	1000	The mark
19	19.a	H_2SO_3	1/29/1	1 mark
	19.b	HCN	1/3	1 mark
	19.c	Change in temperature.		1 mark
	19.d.i	$K_a = \frac{[H^+][HSO_3^-]}{[H_2SO_3]}$		1 mark
	19.d.ii	mol dm ⁻³		1 mark
	19.e	Lance of the control	nark) nark) nark)	3 marks

<u>Part</u>	Section	<u>The answer</u>	<u>The</u> mark
20	20.a	-Titration curve A: Strong acid – Strong alkali (base)	2 marks
		-Titration curve B: Weak acid—Strong alkali (base)	
	20.b	-Titration curve A: 7.0±1	2 marks
		-Titration curve B: 9.0±1	
	20.C	Methyl orange (1mark)	2 marks
		Because its color-change range (pH range) is covered by the	
		steep portion of the titration curve A only. (1mark)	

Part	Section	The answer Cilibria	The mark
	21.a	A solution whose pH is totally unaffected by the	1 mark
		addition of small quantities of acid or alkali.	
3.	21.b	$K_{a} = \frac{[H^{+}][HCO_{2}^{-}]}{[HCO_{2}H]}$ $1.6 \times 10^{-4} = \frac{[H^{+}](0.30)}{(0.25)} \qquad (1mark)$ $[H^{+}] = 1.3 \times 10^{-4} \text{ mol dm}^{-3} \qquad (1mark)$ $pH = -\log [H^{+}] = 3.88 \qquad (1mark)$ $OR \qquad pH = pK_{a} + \log \left(\frac{[HCO_{2}^{-}]}{[HCO_{2}H]}\right) \qquad (1mark)$ $= -\log (1.6 \times 10^{-4}) + \log \left(\frac{(0.30)}{(0.25)}\right) \qquad (1mark)$ $= 3.88 \qquad (1mark)$	3 marks
	21.c.i	When a small amount of hydrochloric acid is added to	
		this buffer solution, most of the extra H ⁺ (aq) ions reac with the reservoir of HCO ₂ -(aq), and this tends to minimise the decrease in pH.	
	21.c.ii	$HCO_2^-(aq) + H^+(aq) \rightarrow HCO_2H(aq)$	1 mark

Part	Section	The answer	The mark
	22.a	e.m.f = +0.52 - (-0.88) = 1.40 V	1 mark
	22.b	298 K	3 marks
	United States	1.00 bar or 1.00 atm	
		Solutions of 1.00 mol dm ⁻³	
	22.c.i	NiO(OH)	1 mark
	22.c.ii	+2	1 mark
	23.a.i	e.m.f. = E(rhs) - E(lhs)	1
		= 1.52 - 0.77 = + 0.75 V	
	23.a.ii	$Fe^{2+} \rightarrow Fe^{3+} + e-$	1

This is the end of the Marking Guide

MARKING GUIDE

, و<u>زَل</u>ارَةً ولانسَّارِينَ وَلاِنسَانِكَ وَلِينَّالِكَ اللَّيْسَانِكَ وَوَلَوْهُ وَلِلاِنْسَادِكَ وَلِوَلِينُو لِلاِنْمَانات

GENERAL EDUCATION DIPLOMA BILINGUAL PRIVATE SCHOOLS FIRST SESSION

1.1

CHEMISTRY 2020 / 2021

General Education Diploma, End of year exam, First Session current Schools, Chemistry, 2020/2021

		Total	mark	∞	9	ď	11	ro	Т	П	13	09	
		S	Reasoning (20%)	1	1	7		1	1	7	2	10	
	nse (80%)	Cognitive levels	gniylqqA (%02)	3	8	2	3	2	ř	4	3	24	
	Extended response (80%)	C	gniwonX (%0£)	2	1	1	3	1	1	3	3	14	
The state of the s	Exte		Marks	9	5	4	6	4		6	10	48	
			No. oV gnestions				∞					8	
		Cognitive levels	nitive levels	Reasoning (20%)	1	1	ı	1	ı	ı	_	1	2
	(20%)			gniylqqA (%02)	1	1	1	1	1	ı	1	1	9
	e choice		Knowing (30%)	1	ī	T	ī	1	I	1	1	4	
TO THE PERSON NAMED IN	Multipl		Marks	2	1	1	2	1	ı	2	3	14	
1.47.			No. of Items	2	1	1	2	1	1	7	8	14	
i.	% gnithgisW		14%	10%	%8	19 %	% 8	2 %	18 %	21 %	100%		
	No. of outcomes			6	9	ĸ	12	w	-	11	13	62	
Exam Specifications:	Topics of the units			An introduction to the chemistry of transition elements	Arenes and phenols	Carboxylic acids	Nitrogen compounds	Chemical energetics	Quantitative kinetics	Quantitative equilibria	Electrochemistry	Total	

General Education Diploma, End of year exam, First Session Bilingual Private Schools, Chemistry, 2020/2021 Distribution of cognitive domains and marks.

Item	Mark	Unit	Page	cognitive domains	output
1	1	Transition elements	413	Knowing	1.2(a-b-
1	1				c-d)
2	1	Transition elements	402	Applying	1.1.g
3	1	Arenes and phenols	415-419	Applying	2.1 a.i
4	1	Carboxylic acids	309-443	Applying	3.2.b,f
5	1	Nitrogen Compounds	450	Applying	4.1.a
6	1	Nitrogen Compounds	459	Reasoning	4.2.c
7	1	Chamical Engagetic	100	Irnovvina	6.1e.i,
/	1	Chemical Energetic	100	knowing	6.1f.i
8	1	Quantitative Equilibria	373	knowing	8.1.j
9	1	Quantitative Equilibria	370	Applying	8.1.h
10	1	Electrochemistry	381-387	knowing	9.1a
11	1	Electrochemistry	384-387	Applying	9.1n
12	1	Electrochemistry	385-387	Reasoning	9.1j

Item	Mark	Unit	Page	cognitive domains	output
13.a	1	Transition elements	407	Applying	1.2(b)
13.b	2	Transition elements	408	Knowing +Reasoning	1.2 (g)
13.c.i	1	Transition elements	406	Applying	1.2(f)
13.c.ii	1	Transition elements	404	Knowing	1.2(d)
13.c.iii	1	Transition elements	404	Applying	1.2(d)
14.a	1	Arenes and phenols	430	Applying	2.1 b
14.b	1	Arenes and phenols	421	Applying	2.1 (j) i
14.c	1	Arenes and phenols	426	Knowing	2.1 (f) i
14.d	2	Arenes and phenols	434	Applying+Reasoning	2.1 (j) ii
15.a	1	Carboxylic acids	445	Applying	3.2 (e)
15.b	1	Carboxylic acids	443	Reasoning	3.2 (f)
15.c	1	Carboxylic acids	444	Applying	3.2(e)
15.d	1	Carboxylic acids	444	Reasoning	3.2 (a)+(e)
16.a.i	1	Nitrogen Compounds	458+459	Applying	4.1.d
16.a.ii	1	Nitrogen Compounds	451	Applying	4.1.b
16.a.iii	1	Nitrogen Compounds	459	Applying	4.2.c
16.b.i	1	Nitrogen Compounds	464	knowing	4.2.h
16.b.ii	1	Nitrogen Compounds	462	knowing	4.2.f
16.b.iii	2	Nitrogen Compounds	464	Applying	4.2.h
16.c.i	1	Nitrogen Compounds	460	knowing	4.2.d
16.c.ii	1	Nitrogen Compounds	460	Reasoning	4.2.d
17.a	1	Chemical Energetic	108	knowing	6.2.a
17.b	2	Chemical Energetic	108-116	Applying	6.2b
17.c	1	Chemical Energetic	108-116	Reasoning	6.2b +6.2c
18	1	Chemical Kinetics	353	knowing	7.1.a

		ال وَوَادُقُ وُلِافِتْهَا مِنْ وَالْمُ			
Item	Mark	.j.v./Unit	Page	cognitive domains	Output
19.a.i		uantitative Equilibrium	368	knowing	8.1.c
19.a.ii	1	Quantitative Equilibrium	369	knowing	8.1.d
19.b.i	1	Quantitative Equilibrium	367	Applying	8.1.e
19.b.ii, iii	2	Quantitative Equilibrium	373,367	Applying	8.1.j,f
19.c	1	Quantitative Equilibrium	374	Applying	8.1.k
19.d.i	1	Quantitative Equilibrium	371	knowing	8.1.1
19.d.ii	2	Quantitative Equilibrium	371	Reasoning	8.1.m
20.a	2	Electrochemistry	382	Knowing	9.1.g
20.b	1	Electrochemistry	383	Knowing	9.1.c.iv
20.c.i	1	Electrochemistry	381-387	Applying	9.1a , 9.1.c.ii
20.c.ii	1	Electrochemistry	384	Applying	9.11
20.c.iii	1	Electrochemistry	381-387	Applying	9.1k
20.d.i	2	Electrochemistry	381-387	Applying	9.1k
20.d.ii	2	Electrochemistry	385-387	Reasoning	9.1m + 9.1n

TOTAL MARKS: 60

PAGES: 5

Question One (12 Marks)

There are 12 multiple-choice items. Each correct answer worth ONE mark.

Item No.	Correct option
1	c. The ions of all the 3d-block elements form complex ions by donating electrons.
2	b. +2 +7
3	c. It Shows the typical reactions of alkenes
4	d. CH ₃ CH ₂ COCl Carboxylic acid
5	a. Amine
6	d. CH ₃ CH ₂ COCl with CH ₃ CH ₂ NH ₂
7	a. This reaction is endothermic.
8	c. Weak acid with strong alkali Strong acid with strong alkali
9	d. 13.3
10	b. The reducing agent undergoes oxidization.
11	b. Au
12	c. A > B > C

QUESTION TWO: Extened respone (48 marks)

Part	Section	The answer	Mark
13		+2	1
13	a.		2
	b.	Bidentate (1 mark)	
		Because Each ligand joins by two bonds to the metal ion <u>OR</u>	
		Each ligand attached by two coordinate bonds to the metal ion	
		OR each ligand contains two lone pairs of electrons OR	
		Ligands have two donor atoms which allow them to bind to	
		central metal atom (1 mark)	
	c.i	Cl Cl Cl Cl To get the mark both the 3D shape and the charge should be correct.	1
	c.ii	Olive green or green or yellow	1
	c.iii	6 or six	1
14	a.	Ethylbenzene	1
	b.	Cl or Cl	1
	c.	acyl chloride and aluminum chloride (AlCl ₃)	1
	d.	OH O'Na ⁺ + NaOH + H ₂ O	2
		To get the mark both reactant and products should be correct.	

	ولاحتانات	100 15 CONTRACTOR 1010 1	T
Part	Section	The answer	Marks
15	a.	C NH ₂	1
	b.	The electronegativity of the oxygen and the easily polarized C=O double bond ,have dramatic effect on the reactivity of acylchloride compared with that of chloroalkanes	1
	c.	Nucleophilic substitution reaction	1
	d.	amide	1
16.a	i	CH ₂ CN H ₃ C CH ₂	1 mark
	ii.	Butylamine Or (1-aminobutane)	1 mark
	iii.	H ₂ C NH CH ₂ CH ₃	1 mark
16.b	i.	Condensation reaction.	1 mark
	ii.	H—HC O	1 mark
	iii.	H ₂ N OH OH Peptide bond 1 month for the attractive 1 month for the point ide hand	2 marks
1.0		1 mark for the structure, 1 mark for the peptide bond.	1
16.c	i	Heating with NaOH(aq). -To get the mark both answers should be mentioned.	1 mark
	ii.	H O CH ₃ H H ₃ C—C—C—N—C—CH ₃ H H	1 mark

The enthalpy changes in turning any reactants into a set of products is the same no matter what route we take. Or the enthalpy change for a reaction is independent of the path taken. Or the value of the enthalpy change for a reaction in one step or in many steps. The enthalpy cycle will be: C ₃ H _{8(g)} + 5O _{2(g)}	<u>Part</u>	Section	The answer	<u>The</u> mark
$C_{3}H_{8(g)}+5O_{2(g)} \qquad \Delta H \atop 3CO_{2(g)}+4H_{2}O_{(l)}$ ΔH_{2} $3C_{(s)}+4H_{2(g)}+3O_{2(g)} \ (\frac{y_{2}}{2} \ mark)$ $\Delta H^{\circ}_{c}[C_{3}H_{8(g)}]+\Delta H=3x\Delta H^{\circ}_{c}[CO_{2(g)}]+4x\Delta H^{\circ}_{c}[H_{2}O_{(l)}] \ (\frac{y_{2}}{2} \ mark)$ $\Delta H=(3x-393)+(4x-286)(\frac{y_{2}}{2} \ mark)$ $\Delta H_{2}=(\Delta H^{\circ}_{4}[C_{3}H_{8(g)}])=(-286) \text{ kJ mol}^{-1}(\frac{y_{2}}{2} \ mark)$ $\Delta H_{3}=(3x\Delta H^{\circ}_{4}[CO_{2(g)}]+4x\Delta H^{\circ}_{4}[H_{2}O_{(l)}])=(3x-393)+(4x-286)=-2323 \text{ kJ mol}^{-1}(\frac{y_{2}}{2} \ mark)$ $\Delta H=\Delta H_{2}-\Delta H_{1}(\frac{y_{2}}{2} \ mark)$ $\Delta H=-2323-(-286)=-2037 \text{ kJ mol}^{-1}(\frac{y_{2}}{2} \ mark)$ $\Delta H^{\circ}_{2}=(3x\Delta H^{\circ}_{1}[CO_{2(g)}]+4x\Delta H^{\circ}_{4}[H_{2}O_{(l)}])-(\Delta H^{\circ}_{1}[C_{2}H_{3}OH_{(l)}]) \ (\frac{y_{2}}{2} \ mark)$ $=(3x-393)+(4x-286)-(-286) \ (\frac{y_{2}}{2} \ mark)$ $=(3x-3$		a	is the same no matter what route we take. Or the enthalpy change for a reaction is independent of the path taken. Or the value of the enthalpy change for a reaction is the same whether we carry out the reaction in one step or in many steps.	1
or ΔH ^θ has a negative number. or the products have less enthalpy than the reactants. or the difference in the enthalpy (ΔH ^θ) of the chemicals is given out as heat. It is the time taken for the concentration of a reactant to decrease to	17	b	$\begin{array}{c} \Delta H_{3}(g) + 5O_{2}(g) & \Delta H_{3}(G)_{2}(g) + 4H_{2}O_{1}(g) \\ \Delta H_{2} & \Delta H_{2}(g) + 3O_{2}(g) \ (\% \ mark) \\ \Delta H^{\circ}_{c}[C_{3}H_{8}(g)] + \Delta H = 3x\Delta H^{\circ}_{c} \ [CO_{2}(g)] + 4x\Delta H^{\circ}_{c} \ [H_{2}O_{1}(g)] \ (\% \ mark) \\ -286 + \Delta H = (3 \ x \ -393) + (4x - 286) (\% \ mark) \\ \Delta H = (3 \ x \ -393) + (4x - 286) + 286 = -2037 \ kJ \ mol^{-1} \ (\% \ mark) \\ \textbf{Or} \\ \Delta H_{2} = (\Delta H^{\circ}_{f}[C_{3}H_{8}(g)]) = (-286) \ kJ \ mol^{-1} \ (\% \ mark) \\ \Delta H_{3} = (3x\Delta H^{\circ}_{f}[CO_{2}(g)] + 4x\Delta H^{\circ}_{f}[H_{2}O_{1}(g)]) = (3 \ x \ -393) + (4x - 286) = -2323 \ kJ \ mol^{-1} \ (\% \ mark) \\ From \ the \ enthalpy \ cycle : \\ \Delta H = \Delta H_{2} - \Delta H_{1} \ (\% \ mark) \\ \Delta H = -2323 - (-286) = -2037 \ kJ \ mol^{-1} \ (\% \ mark) \\ \textbf{OR} \\ \Delta H^{\circ} = (3x\Delta H^{\circ}_{f}[CO_{2}(g)] + 4x\Delta H^{\circ}_{f}[H_{2}O_{1}(g)]) - (\Delta H^{\circ}_{f}[C_{2}H_{5}OH_{1}(g)]) \ (\% \ mark) \\ = (3 \ x \ -393) + (4 \ x \ -286) - (-286) \ (\% \ mark) \\ = (3 \ x \ -393) + (4 \ x \ -286) - (-286) \ (\% \ mark) \\ = -2037 \ kJ \ mol^{-1} \ (1 \ mark) \\ (If \ a \ student \ did \ not \ write \ the \ equation \ but \ applied \ directly \ and \ correctly \ mark \\ \end{array}$	
it is the time taken for the concentration of a reactant to decrease to		c.	or ΔH^{θ} has a negative number. or the products have less enthalpy than the reactants. or the difference in the enthalpy (ΔH^{θ}) of the chemicals is given out	
	18		The second secon	-

<u>Part</u>	Section	The answer	<u>The</u>
	i	[H ₃ O ⁺][OH ⁻]	mark 1 mark
19.a		The temperature	1 mark
19.b	ii.	$Ka = [H_3O^+(aq)] [CH_3CO_2^-(aq)]/ [CH_3CO_2H (aq)]$	1 mark
19.0	i.		
	ii.	pH = 9.0 (allow value between 8 to 11)	1 mark
	iii.	pH for the ethanoic acid =3 thus:	1 mark
10 -		$Ka = (1.0 \text{ x}10^{-3})(1.0 \text{ x}10^{-3})/0.06 = 1.67 \text{ x}10^{-5} \text{ mol dm}^{-3}$	1 morts
19.c		Phenolphthalein	1 mark
19.d	i.	A solution whose pH is totally unaffected by the addition of small quantities of acid or alkali.	1 mark
		In this buffer solution the equilibrium:	2 marks
- Ag		$H_2CO_3(aq) \longrightarrow H^+(aq) + HCO_3^-(aq)$ (1 mark)	
	ii.	When a small amount of strong acid is added, most of the extra	
		H ⁺ (aq) ions react with the reservoir of HCO ₃ (aq), and so	
		the equilibrium moves to the left to remove the added H ⁺ . This	
		tends to minimise the decrease in pH. (1 mark)	
	a.	T= 298K or 25C° (1mark), concentration = 1.00 mol dm ⁻³ (1mark)	2
20	b.	To complete the circuit or to allow ions to flow while minimising the mixing of the electrolytes by diffusion. Or to	1
		complete the electrical circuit allowing the movement of ions	
		between the two half-cells so that ionic balance is maintained	
	c.i	Al or aluminum	1
	c.ii	$Al_{(s)} Al^{3+}_{(aq)} X^{2+}_{(aq)} X_{(s)}$	1
	c.iii	$2Al_{(s)} + 3X^{2+}_{(aq)} \rightarrow 2Al^{3+}_{(aq)} + 3X_{(s)}$	1
		-To get the mark all components of the equation should be	
		correct	*
	4:	-Balancing is not necessary.	2
	d.i	The half-cell oxidation reaction: $X_{(s)} \rightarrow X^{2+}_{(aq)} + 2e^{-}(1 \text{mark})$ The half-cell reduction reaction: $Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}(1 \text{mark})$	2
	d.ii	* from cell (1)	2
	4.11	$Al_{(s)} Al^{3+}_{(aq)} X^{2+}_{(aq)} X_{(s)}$	
		$E^{\Theta}_{\text{cell}} = E^{\Theta}_{\text{right-hand half-cell}} - E^{\Theta}_{\text{left-hand half-cell}}$	
		$0.9 = E_{(X)}^{\Theta} - (-1.66)$	
		$E^{\Theta}(X) = +0.76 \text{ V(1mark)}$	
		* from cell (2)	
		$E^{\Theta}_{\text{cell}} = E^{\Theta}_{\text{right-hand half-cell}} - E^{\Theta}_{\text{left-hand half-cell}}$	
		$= E^{\Theta}_{(Ag)} - E^{\Theta}_{(X)}$ = (+0.80) - (+0.76) = +0.04 V (1mark)	
		(5)	

MARKING GUIDE

GENERAL EDUCATION DIPLOMA BILINGUAL PRIVATE SCHOOLS SECOND SESSION

CHEMISTRY 2020 / 2021

Exam Specifications:

	Total mark			9	v.	1	N	1	11	13	09										
ponse (80%)	S	Reasoning (20%)	1	1	7	1	1	1	2	2	10										
	Cognitive levels	gniylqqA (%02)	3	3	7	S	2	1	4	5	24										
deg respon	Cos	gniwonA (%0£)	2	1	1	3	1	1	3	3	14										
Exter	IAISILKS		9	5	4	6	4	1	6	10	48										
		No. oV snoitesup	L.			∞					∞										
	Cognitive levels	Cognitive levels	vels	vels	vels	vels	vels	vels	vels	vels	vels	Reasoning (20%)	1	ī	T	1	1	1	ı	1	2
20%)			gniylqqA (%02)	1	-	1	1	1.	ı	1	1	9									
Multiple choice (20%)			Cogn	Knowing (%0£)	1	ı	ı	1	_	ı	1	1	4								
Tultiple	Marks		2	1	1	2	1	1	2	3	14										
2		No. of Items	2	1	1	2	1	1	2	3	14										
g	₩ gniihgiəW			10%	%8	% 61	% 8	2 %	18 %	21 %	100%										
sə	No. of outcomes			9	v.	12	5	1	11	13	62										
	Topics of the units			Arenes and phenols	Carboxylic acids	Nitrogen compounds	Chemical energetics	Quantitative kinetics	Quantitative equilibria	Electrochemistry	Total										

Distribution of cognitive domains and marks.

Item	Mark	Unit	Page	cognitive domains	الْرُوْمِيِّ أَنْ الْمُعْمِّى الْمُعْمِّى الْمُعْمِّى الْمُعْمِّى الْمُعْمِّى الْمُعْمِّى الْمُعْمِّى الْمُعْمَ
1	1	Transition elements	408	Knowing	1.2(g)
2	1	Transition elements	404	Applying	1.2(d)
3	1	Arenes and phenols	426	Applying	2.1 (f) I (4)
4	1	Carboxylic acids	444	Applying	3.2 (e)
5	1	Nitrogen Compounds	450	Applying	4.1.a
6	1	Nitrogen Compounds	459	Reasoning	4.2.c
7	1	Chemical Energetic	101	knowing	6.1e.ii ,6.1 f.ii
8	1	Quantitative Equilibria	373	knowing	8.1.j
9	1	Quantitative Equilibria	374	Applying	8.1.j
10	1	Electrochemistry	381-387	knowing	9.1a
11	1	Electrochemistry	384-387	Applying	9.1n + 9.1j
12	1	Electrochemistry	385-387	Reasoning	9.1m

Item	Mark	Unit	Page	cognitive domains	output
13.a	1	Transition elements	403	Knowing	1.2(a)
12.1	1	Transition elements	406	Knowing	1.2(f)
13.b			407		(annex)
12	2	Transition elements	407	Applying+reasoning	1.2
13.c					(e-f)
1.4	2	Transition elements	402	Applying	1.2(b)
14.			404		1.2(d)
15.a	1	Arenes and phenols	421	Applying	2.1 (b)
15.b	1	Arenes and phenols	434	Applying	2.1(a) 2.1 (j)
16.a	1	Arenes and phenols	417	Knowing	2.1(d)
16.a	1	Arenes and phenols	417	Reasoning	2.1 (b)
16.c	1	Arenes and phenois	418	Applying	2.1 (b)
17.a	1	Carboxylic acids	443	Reasoning	3.2 (d)
17.a 17.b	1	Carboxylic acids	445	Applying	3.2 (e)
17.c	1	Carboxylic acids Carboxylic acids	309	Reasoning	3.2(b)
17.d	1	Carboxylic acids	445	Applying	3.2 (a)
18.a.i	1	Nitrogen Compounds	459	Applying	4.2.c
18.a.ii	1	Nitrogen Compounds	451	knowing	4.1.b
18.a.iii	2	Nitrogen Compounds	458	Applying	4.1.d
18.a.iv	2	Nitrogen Compounds	460	Applying Applying	4.2.d
18.b.i	1	Nitrogen Compounds	461	knowing	4.2.e
18.b.ii.a	1	Nitrogen Compounds	464	knowing	4.2.h
18.b.ii.b	1	Nitrogen Compounds	464	Reasoning	4.2.h
19.a	1	Chemical Energetic	102-111	knowing	6.2.a
19.a 19.b	2	Chemical Energetic	102-111	Applying	6.2b
19.0 19.c	1	Chemical Energetic	108-116	Reasoning	6.2b
	1	Chemical Kinetics	349	knowing	7.1.a
20	1	Chemical Kinetics	349	Kilowilig	/.1.a

Item	Mark	Unit	Page	cognitive domains	output//
21.a.i	1	Quantitative Equilibrium	371	knowing (C	المُعَلِّلُ الْمُعَلِّلُ الْمُعَلِّلُ الْمُعَلِّلُ الْمُعَلِّلُ الْمُعَلِّلُ الْمُعَلِّلُ الْمُعَلِّل
21.a.ii	1	Quantitative Equilibrium	371	knowing	8.1.1,m
21.b.i	1	Quantitative Equilibrium	367	knowing	8.1.e
21.b.ii	2	Quantitative Equilibrium	368	Applying	8.1.h
21.c.i	1	Quantitative Equilibrium	373	Applying	8.1.j
21.c.ii	1	Quantitative Equilibrium	374	Applying	8.1.j
21.c.iii	2	Quantitative Equilibrium	374	Reasoning	8.1.k
22.a	1	Electrochemistry	383	Knowing	9.1.c.iv
22.b	1	Electrochemistry	386	Knowing	9.1.d
22.c	1	Electrochemistry	386-387	Applying	9.1n
22.d	1	Electrochemistry	384	Applying	9.11
22.e	1	Electrochemistry	381-387	Applying	9.1k
22.f	3	Electrochemistry	381-387	Applying	9.1c
22.g	2	Electrochemistry	385-387	Reasoning	9.1m + 9.1n

PAGES

TOTAL MARKS: 60

Question One (12 Marks)

There are 12 multiple-choice items. Each correct answer worth ONE mark

Item No.	Correct option
1	d. [Co(NH ₂ CH ₂ CH ₂ NH ₂)] ²⁺
2	a. Octahedral
3	b) Aluminum chloride with heat
4	b-esters
5	a) Amine
6	b) CH ₃ CH ₂ COCl and NH ₃
7	b) The heat is given out to the surrounding.
8	d) Weak acid with weak alkali
9	c) Z
10	b) The reducing agent undergoes oxidization.
11	d) Al _(s)
12	c) Ag, Al

Question Two (48 Marks)

Part	Section	The a	nswer	Mark	
13	a	Complex ion: a central transition	n metal ion surrounded by ligand	1	
	b	1-orange Or Red brown	ange Or Red brown		
	С	$[Fe(H2O)6]3+ \xrightarrow{3NaOH} [Fe(H2O)3($ (1 mark) (1 mark)	$e(H_2O)_6]^{3+} \xrightarrow{3NaOH} [Fe(H_2O)_3(OH)_3]^{3+}$ mark) (1 mark)		
14		Number of dative bonds	The oxidation state of the central metal	2	
		6	+3		

Part	section	The answer	Marks
15	a.	3-nitrobromobenzene	1
	b.	O_2N NO_2 NO_2	1
16	a.	120°	1
	b.	Because the benzene consists of six carbon atoms arranged in a regular hexagon or p orbitals are all parallel to each other and perpendicular to the plane of the ring Or p orbitals overlap equally with both neighbors forming a delocalized six -centre molecular \prod (pi) orbital.	1
	c.		1

Part	Section	The answer	Marks
17	a	CH₃CH₂COOH	1
	ь	Nucleophilic substitution	1
	c.	3 CH ₃ CH ₂ COOH + PCl ₃ → 3CH ₃ CH ₂ COCl + H ₃ PO ₃ 3 CH ₃ CH ₂ COOH + PCl ₅ → 3CH ₃ CH ₂ COCl + POCl ₃ + HCl Or CH ₃ CH ₂ COOH + SOCl ₂ → CH ₃ CH ₂ COCl + SO ₂ + HCl Balancing is not necessary. To get the mark all components should be written.	1
	d.	3-bromobutanoylchloride	1

		1 Ch. Salans	
<u>Part</u>	Section	The answer	The
		الله الله الله الله الله الله الله الله	mark
18.a	i	CI	1 mark
	ii.	Propylamine Or (1-aminopropane)	1 mark
	iii.	CH ₃ LiAIH ₄ , in dry ether 1 mark for the reagent and 1 mark for the product. If the student write the reagent H ₂ mark is given.	2 marks
	iv.	OH CH ₃ 1 mark for each product.	2 marks
18.b	i.	Amino acids.	1 mark
	ii.a	Peptide or dipeptide	1 mark
	ii.b	H ₂ N OH OH CH ₃	1 mark

			المنتق المنتية والمنتاجة	and .
<u>Part</u>	Section	<u>The answer</u>	والمثن للانتهالت والمالف الليمانات	<u>The</u>
			127/	<u>mark</u>
19.	a	0 or zero		1 mark
		The enthalpy cycle will be:	(6.3)	
		ΔH^{Θ}		
		$N_{2(g)} + 2O_{2(g)} \longrightarrow 2NO$	$O_{(g)} + O_{2(g)}$	
		ΔH^{θ}_{1} = 68 KJ mol ⁻¹	(8)	
		ΔH^{θ}_{2} = -1	12 KJ mol ⁻¹	
		$2NO_{2(g)}((\frac{1}{2}mark))$		
		21 (O2(g))((72714111)		
		ΔH^{θ}_{1} = 68 KJ mol ⁻¹ ΔH^{θ}_{2} = -	112 KJ mol ⁻¹	
		$2\Delta H^{\theta}_{f}[NO_{2(g)}] + \Delta H^{\theta} = 2\Delta H^{\theta}_{f}[NO_{(g)}] + 2\Delta H^{\theta}_{f}[NO_{(g)}]$		2 marks
		$(2x34) + \Delta H^{\Theta} = (2x90) + (2x34) (\frac{1}{2}mark)$	(72.11.51.15)	
	b.	$\Delta H^{\Theta} = 180 \text{kJ mol}^{-1} (\frac{1}{2} \text{mark})$		
		Or From the enthalpy cycle:		
		$\Delta H^{\Theta} + \Delta H^{\Theta}_{2} = \Delta H^{\Theta}_{1}$ or $\Delta H^{\Theta} = \Delta H^{\Theta}_{1} - \Delta H^{\Theta}_{2}$ (½m)	ark)	
		$\Delta H^{\Theta} = 68 - (-112) \text{ kJ mol}^{-1} (\frac{1}{2} \text{mark})$	•	
		$\Delta H^{\Theta} = 180 \text{kJ mol}^{-1}$ (1 mark)		
		OR		
-		$\Delta H^{e} = (2x\Delta H^{e}_{f}[NO_{(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[N_{2(g)}] - [2\Delta H^{e}_{f}[N_{2(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}_{f}[O_{2(g)}] + \Delta H^{e}_{f}[O_{2(g)}] - [2\Delta H^{e}$	$2x\Delta H^{\theta}f[O_{2(g)}]$ (½mark)	
		$= (2 \times 90 + 1 \times 0) - [(2 \times 0 + 2 \times 0)] \qquad (\frac{1}{2} mark)$		
		$= 180 \text{ kJ mol}^{-1} $ (1 mark)		
		(If a student did not write the equation but applied dir	ectly and correctly mark	
		is given)		
		endothermic(½mark)		
		Because the ΔH^{o} has a positive sign		
	1	or ΔH ^e has a positive number		1 mark
	d	or the products have more enthalpy than the re-		1 mark
		or the reactants have less enthalpy than the pro		,
		or the difference in the enthalpy (ΔH°) of the dheat. Or because energy is added to the system		
20		How the concentration of a product P increase		1mark
20		the concentration of a reactant R decreases wi		
		how quickly the reaction happens.	an annie. Of it tells as	
		110 W quiekty the reaction nuppens.		

Part	Section	The answer	The mark
21.a	i.	A solution whose pH is totally unaffected by the addition of small quantities of acid or alkali.	1 mark
	ii.	A mixture of a weak acid and its conjugate base (salt), Or a mixture of a weak base and its conjugate acid(salt).	1 mark
	i.	$Ka = [H^{+}][A^{-}]/[HA]$	1 mark
21.b	ii.	$Ka = 6.3 \times 10^{-5} = [H^{+}]^{2}/0.05$ $[H^{+}] = \sqrt{(Ka \times c)} = \sqrt{(6.3 \times 10^{-5})} \times 0.05)$ $[H^{+}] = 0.00177 \text{ mol dm}^{-3}$ (1 mark) $pH = - \text{Log}10[H^{+}]$ pH = 2.75 (1 mark) If the student got the final result directly the mark is given.	2 marks
	i.	9.0 or any number between 8 to 11.	1 mark
	ii.	5.0 or any number between 5 to 5.5	1 mark
21.c	iii.	Phenolphthalein (1 mark) Because phenolphthalein has pH range 8.2 to 10.0 whose colour change is covered by the equivalence point of the titration curve (1 mark)	2 marks

		الرق اللاقابالات والمعالمة	//
Part	Section	The answer	The mark
22	a.	Salt bridge	1 mark
	b.	The electrons flow from the negative electrode to the positive electrode.	1mark
	c.	By using the standard electromotive force (E^{θ}_{cell}) values. or using the standard electrode potentials values	1mark
	d.	$Mg(s) \mid Mg^{2+}(aq) \mid Cu^{2+}(aq) \mid Cu(s)$	1mark
	e.	Zinc or Zn(s)	1mark
	f.	Voltmeter	3marks
		Fe ²⁺ (aq) 1.00 mol dm ⁻³ iron(II) sulfate FeSO ₄ (aq) -Complete circuit involving labelled voltmeter; labelled salt	
		bridge; (1 mark) -Solutions two separate solutions are iron(II) sulfate FeSO ₄ with iron or Fe rod and copper(II) sulfate CuSO ₄ with copper or Cu rod (1 mark) - Concentration of solution(s) is 1 mol dm ⁻³ or 1 M (1 mark)	
	g.	$E^{\Theta}_{cell} = E^{\Theta}(Mn^{2+}_{(aq)}/Mn_{(s)}) - E^{\Theta}(Zn^{2+}_{(aq)}/Zn_{(s)})$ = (-1.81) - (-0.76) = -1.05 V (1mark) So the reaction is not feasible. (1mark)	2mark

(6)

This is the end of the Marking Guide